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Seventh Progress Report on

STRESSES AND DEFORMATIONS IN THIN
SHELLS OF REVOLUTION

Introduction

The objective of this investigation continues to be the development
of methods of analysis for thin shells of revolution subjected to axi-

symmetrical loading of high intensity.

Progress during the report period

During the past six months, the following activity associated with
the project may be noted:

1. Paper on ''Computer Analysis of Axisymmetrically Loaded Shells

of Revolution", by E. P. Popov and Z. A. Lu has been presented

at the IASS Symposium on Shell Structures, September 3, 1965,

in Budapest. Proceedings of the Conference are in press (see

item 1 of the previous report).

2. Computer programms for determining frequencies associated

with axisymmetrical vibrations as well as the response of circular

plates and shells to time-dependent force or acceleration input

for a number of boundary conditions has been completed. The

capabilities of the developed solution are illustrated in the

attached note on 'Dynamic Response of Shells of Revolution

Based on Finite Element Approach", by E. P. Popov and H. Y.

Chow. A more detailed report is in preparation.




3. The developments achieved on the project and technical
assistance were given to James Chisholm, a graduate student,

in connection with his M.S. research on pressurized torroidal
shells.

4, Extensive work was done postulating elastic-ideally plastic
and elastic-isotropic hardening materials. Computer programs
for the analysis of circular plates have been achieved. Based
on this work, a synopsis of a paper has been submitted to the
5Sth U. S. National Congress of Applied Mechanics. This
synopsis titled "A Bending Analysis of Elastic-Plastic Circular
Plates” by E. P. Popov, M. Khojasteh-Bakht, and S. Yaghmai is
enclosed. A more complete description and extension of the
developed procedures is in progress. The selected approach
appears to be suitable in general for inelastic response of
rotational shells.

5. The procedures for developing methods of analysis for
predicting large-deflection response of circular plates and

rotational shells remain under consideration.

Budget
A budgetary statement on this project will be sent separately after

the December expenses are reported.




Dynamic Response of Shells of Revolution
Based on Finite Element Approach

by

* L 23
E. P. Popov and H. Y. Chow

Synopsis g)
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The displacement method of analysis using matrix procedures is widely
used in static and dynamic structural problems (Refs. 1, 2). For shells of
revolution, finite elements in the form of conical frustra joined at nodal
circles have been found to be very effective in the solution of problems
. ok k
(Refs. 3, 4). An outline of a solution based on these concepts for
axisymmetrical response to dynamic loads is given in this discussion. Two
examples are included. The data for one of the examples are taken from a
Kok ok 3k
recent paper by S. Klein and R. J. Sylvester. Excellent agreement
between the two solutions is found which serves to corroborate the results

found independently. The other example shows a possible advantage of the
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me thod described here in some problems.
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A more complete report by the authors to NASA is in preparation.
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The linear elastic dynamic analysis of shells of revolution by the
matrix displacement method" Conference on Matrix Methods in Structural
Mechanics, Oct. 1965, Wright-Patterson AFB.




Equations of Motion

Any shell of revolution can be approximated with a sufficient degree of
accuracy for practical purposes by a finite number of elements consisting of
plate, conical, or cylindrical rings. All of such elements are joined at
nodal circles. The matrix formulation of the general dynamic response of

such a substitute structure can be stated as follows:

[M] {am} + K] fa®} - {f(t)} (1)

where the column matrices {f(tﬁ- and {q(t)} are, respectively, the
generalized forces and generalized displacements of the structure. The mass
matrix [M] and the structural stiffness matrix [K] are symmetrical and
furthermore [K] is a positive definite. Therefore, Eq. 1 can be uncoupled
(Ref. 5) and solved using the normal mode superposition technique.

A direct numerical integration method was used in this investigation
to solve the uncoupled second order-differential equations. For each mode
a different interval of time for each integral is used. This procedure
retains the necessary accuracy for the higher frequency modes and avoids
the unnecessary, time consuming computations for the lower frequencies.

The mass matrix [M] and the stiffness matrix [K] for a whole structure
are determined from the assemblage of basic solutions for the el ements.

Since this procedure is well known, only the formulation used to establish

element stiffness and mass matrices is discussed here.




The Element Stiffness and Mass Matrices

The homogeneous solution for a basic finite element can be expressed

in matrix form as follows:

X(s,t)}
o, = (VD Ik (s A, (B 2
i’ - - ij J
W(s,t)
and \
M (s,t)
s .
Si(S,t) = Ns(s’t) = ‘ Yi.(S)} A, (t) (3)
Q_(s,t) i J
s ~ 4
and
i=1,2,3and j=1,2....,6
where Sdi(s,t?§ are displacement-variables which are comprised of
L

rotational X(s,t) meridianal V(s,t), and normal W(s,t) displacements;
{Si(s,t{} are force-variables which consist of meridianal moments
Ms(s,t), meridianal stress-resultants Ns(s,t), and shearing stress-resultants

Qs(s,t).

[Xij(s)] and [Yij(s)] are solution matrices of a homogeneous problem

for an element. {Aj(t)} is a column matrix which can be determined

from the boundary values at each end of the shell segment.



Closed form solutions of Eq. 1 were developed (Refs. 3,4 and authors
report to NASA in preparation) for circular annular rings, conical frustra,
and cylindrical segments. In this formulation, if such elements represent
portions of the actual structure, no limitation on the size of elements needs
to be placed.

Using closed form solutions of Eq. 1, the element stiffness matrices [ k]
were developed and programmed for the above type of elements. The basic
relation for determining { X] can be deduced by considering strain energy U

of an element, and can be shown to be
T -1 .
(k] = [T]" [c] {B 7] [T] (4)

where [T] is a coordinate transformation matrix relating shell element
coordinates to the global coordinates, and matrices [C] and [B] are matrices
[Y] and [X], respectively, upon substitution into them of the boundary values
of s. Since this relationship is but a slightly different form was previously
reported (Refs. 3,4), no further comments will be made here.

To determine the mass matrix [m] for an element, the fundamental dis-
placement-variable vector {di} , Egq. 2, must be re-cast in terms of its

six generalized global nodal coordinates, i.e.,

{di(s,t)} =[xij(s)] [Bjk"lj [Tkm] {qm(t)} (5)

here i = 1,2,3 and j, k, m, = 1,2,3....6.



The general expression for the kinetic energy T(t) (Refs. 6,7) of a

shell element can be written as

T(t) = 3

2 2 . .
u/‘ [m P X (s,t) + m Vz(s,t) +m W (s,t) ] 2n r(s) ds (6)
s
where m is mass per unit of surface area, and Pa is the radius of gyration
of the section of a shell segment.

Upon substituting the displacement variables involved in Eq. 5 into Eq.

6, one obtains

T(t) =

[N

. T -1.T -1 .
<4q (t) >[T] [B 7] [f 2n [E(s)] r(s) ds] [B 7] [T] (q(t)}
s
)
By comparing this complex matrix expression with the usual one for

kinetic energy, definition of the mass matrix [m] is obtained:
m) = [m)" (87117 | f 2x [E()] r(s) ds] [B™1] [T] (8
s

This element mass matrix [m] was determined and programmed for annular rings
using an exact displacement field. For conical frustra the mass matrix

[m] for an element (Ref. 6) was developed on the basis of an assumed
polynomial function to represent the displacement field. For the above
reason, the range of applicability of the developed program as it relates

to the size of elements is different for the two cases.



.

Examples and Conclusions

As the first example consider an elastic circular plate clamped along
the edge subjected to a ring load as shown in Fig. 1. The ring load P is
applied as a step function in time. To determine the dynamic response of
this plate by the developed method, only two elements* need to be used,
since both the [m] and [k] matrices are programmed using the exact dis-
placement field. Alternatively, an arbitrary number of elements may be used
and 20 elements were selected to obtain a solution for comparative purposes.
The results of the two solutions are plotted in Figs. 4a and 4b. Differences
between the two solutions are negligible. The solution based on the use of
20 elements actually is a little less accurate due to the unavoidable
accumulation of numerical errors.

The second example is for the dynamic response of a shallow spherical
cap shown in Fig. 2. The data are from the Klein and Sylvester example.
The results of an output for a 14 element solution are shown in Figs. 5a,
5b and 5c¢. These results are seen to be in excellent agreement with the
Klein and Sylvester solution and this provides a good check on the two
independently developed programs. In the solution of this problem no
advantage can be gained by taking large finite elements.

The developed program of course also can be successfully applied to

deep shells as well as to shell-like enclosures. For example, the dynamic

E 3
A disk of 10 in. radius, and an annular ring bounded by 10 in. and 20
in. radii.



response of the sphere shown in Fig. 3 was readily found using a solution
based on 50 elements. (Results not reported here).

The dynamic response of linear elastic shells of revolution of arbitrary
meridian shape and thickness variation can be determined using finite element
approdch. The accuracy appears to be excellent, and once a program is
developed a solution is achieved very rapidly. Occasionally, solutions
based on exact displacement fields for an element mass and stiffness matrices

may prove advantageous.
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*
A BENDING ANALYSIS OF ELASTIC-PLASTIC CIRCULAR PLATES
Egor P. Popov

M. Khojasteh-Bakht
S. Yaghmai

University of California, Berkeley

A general bending analysis of circular plates with small-deflections and
axial symmetry is developed in the paper. It is postulated that the Kirchh-
offean assumption neglecting shearing effects is applicable, and that the
von Mises yield condition with the associated flow rule holds. The solutions
are obtained for elastic~perfectly plastic solid as well as for isotropic
hardening material. In both instances incremental constitutive laws are
used which have caused a considerable mathematical difficulty in the solution
of boundary value problems.

The numerical solutions are achieved by dividing a plate into small
circular annulii and a number of very thin layers along its depth.

In linear theory of plasticity the infinitesimal increments of strain
and stress tensors are related linearly. In the proposed solutions the
infinjtesimal increments are replaced by small finite increments. Within
an increment the change of material properties is accounted for. At any
stage of loading, relations analogous to those for anisotropic elastic
media between the stress and strain increment tensors are used. For each
increment of loading the problem is reduced to a solution of non-homogeneous
anisotropic linear elastic problem. The problem is formulated in matrix

algebra using the stiffness method.

*
This research was supported by NASA under NsG-274 grant.




Examples of solutions for simply supported and fixed-ended plates are
given for elastic-perfectly plastic and hardening materials. The questions
of solution convergence and the effect of loading paths are discussed.
Comparison is made with some existing solutions for plates based on the
deformation (total strain) theory of plasticity. Extension of the proposed

approach to other axisymmetrical problems is indicated.
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